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We develop a phenomenological hydrodynamic theory of coherent magnetic precession coupled to electric
currents. Exchange interaction between electron spin and collective magnetic texture produces two reciprocal
effects: spin-transfer torque on the magnetic order parameter and the Berry-phase gauge field experienced by
the itinerant electrons. The dissipative processes are governed by three coefficients: the ohmic resistance,
Gilbert damping of the magnetization, and the “� coefficient” describing viscous coupling between magnetic
dynamics and electric current, which stems from spin mistracking of the magnetic order. We develop general
magnetohydrodynamic equations and discuss the net dissipation produced by the coupled dynamics. The latter
in particular allows us to determine a lower bound on the magnetic-texture resistivity.
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I. INTRODUCTION

Conduction electrons moving in a ferromagnet interact
with the magnetization through the exchange interaction. If
the exchange field is strong and slowly varying in space and
time, the electron spin will adiabatically follow the direction
of the magnetization. We may then consider electrons with
spins up and down along the magnetization direction as two
distinct species of particles, and for convenience we call
them spin up/down electrons. As is well known, a spin up/
down electron wave packet acquires a Berry phase1 that in-
fluences their orbital motion. In effect, the electrons experi-
ence a Lorentz force due to “fictitious” electromagnetic fields
which are local functions of the magnetization.2

In this fictitious electrodynamics, spin up/down electrons
have opposite charges and different conductivities. Their mo-
tion and associated currents interact with the magnetization
through what is commonly called current-driven spin-
transfer torques. We call this interplay between spin currents
and magnetization spin magnetohydrodynamics, in analogy
to the classical theory of magnetohydrodynamics,3 where the
magnetic fields couple to electric currents in conducting flu-
ids and the currents in turn generate magnetic fields. In our
spin magnetohydrodynamics, the Maxwell’s equations for
the magnetic field are replaced by the Landau-Lifshitz-
Gilbert �LLG� equation for the magnetization. In this paper,
we neglect full dynamics of the real electromagnetic fields,
focusing on the spin-related phenomena.

The electron spin follows the magnetization direction per-
fectly only in the limit of an infinitely large exchange field.
In reality, there will be some misalignment and associated
spin relaxation. This is usually described phenomenologi-
cally as a dissipative spin torque with a coefficient � in the
Landau-Lifshitz equation.4–6 In a one-dimensional ring ge-
ometry, we will derive the complete set of coupled spin-
magnetohydrodynamical equations starting from the semi-
phenomenological dynamical equations for nonequilibrium
currents and magnetization. We recast the reactive spin
torque mediated by the Berry phase in this thermodynamic
context. In our theory, we take an alternative view that the �
term arises from a correction to the Berry-phase electromo-
tive force �EMF� in the equation of motion for the charge

current, with the appropriate dissipative spin torque estab-
lished by the Onsager reciprocity.

This physics is presently vigorously studied �experimen-
tally as well as theoretically� in the contexts of current-
driven magnetic excitations and domain-wall motion4–10 and
the reciprocal spin accumulations and voltages generated by
the fictitious gauge fields.11–16 Since the mesoscopic regime
�mainly dealing with variants of magnetic spin valves, tunnel
junctions, and magnetic multilayers� is at present well
explored,17 we will limit our attention here to the case of
continuous magnetic systems.

II. NONDISSIPATIVE SPIN TORQUE

Since the underlying physics is rich and complex in the
most general setting, we will limit our discussion to a simple
setting, which we believe captures all the essential ingredi-
ents of the spin magnetohydrodynamics. Consider a uniform
current in a ferromagnetic ring, assuming for simplicity in-
compressible electric flows �the continuity equation prohibits
current inhomogeneities for an incompressible electron
fluid�. The electric current is then the only dynamical vari-
able describing the electron fluid. The magnetic texture here
could be a domain wall or magnetic spiral, for example �in
higher dimensions we could have topological twists and
kinks such as vortices, hedgehogs, or skyrmions�. See Fig. 1
for a schematic of the setup. In the Landau-Lifshitz phenom-
enology of ferromagnetic dynamics well below the Curie
temperature, only the instantaneous direction of the magne-
tization m�x , t� �or, equivalently, spin density� is assumed to
be a dynamic variable. The magnitude of the spin density S
along m is assumed to be uniform and constant in time. We
will separately drive the current with a time-dependent ex-
ternal magnetic flux ��t� inside the ring and the magnetic
dynamics with a magnetic field h�x , t� applied directly to the
wire.

The first step in our phenomenology is to identify the free
energy F as a function of the thermodynamic variables J and
m�x , t� �or their thermodynamic conjugates�, which com-
pletely determine the macroscopic state of our system, as-
suming local thermal equilibrium. Neglecting spin, the
gauge-invariant free energy associated with an electric cur-
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rent in the ring is given by F�J ,��= �J−� /c�2 /2L, where
we define LJ to be the current corresponding to the canoni-
cal momentum of the electrons. L is the self-inductance of
the ring and c is the speed of light. However, spin up/down
electrons propagating through a quasistatic magnetic
texture18 accumulate also a Berry phase,1 which gives a fic-
titious contribution to the vector potential associated with a
fictitious EMF.11 This vector potential is given �in some con-
venient gauge� by14 Ax�= ��c /e�sin2�� /2��x�, producing
gauge-invariant fictitious flux,

�� =� dxAx� =
�c

2e
� dx�1 − cos ���x� . �1�

�� ,�� are the spherical angles parametrizing m�x�. e�0 is
minus the electron charge. Equation �1� is the flux associated
with spin-up electrons adiabatically following magnetic tex-
ture with the opposite result for spin-down electrons.

The free energy accounting for the Berry phase becomes

F��J,�,���m�x,t��� = �J − �� + p���/c�2/2L , �2�

where p is the polarization of the spin s-dependent conduc-
tivity 	s, p= �	↑−	↓� / �	↑+	↓� �assuming fast spin relax-
ation or half-metallic ferromagnets�. The electric current is
given by

J � − c��F� = �J − �� + p���/c�/L = �JF�, �3�

which is thus the thermodynamic conjugate of J. The equa-
tion of motion for current in our simple electric circuit is
given by Ohm’s law,

�tJ � L�tJ + �t�� + p���/c = − RJ , �4�

where R is the resistance of the wire. Naturally, the dynamic
Berry phase is seen to give a contribution to the EMF,11

E� � − p�t��/c = P� dx m · ��xm 
 �tm� , �5�

which is a well-known result.2 �We defined P= p� /2e.�
Now that the free energy of the current is coupled to the

magnetization of the ring through the Berry-phase flux, there
will be a corresponding reactive coupling of the magnetiza-
tion to the current. We describe magnetic dynamics by the
LLG equation19

�tm = H 
 m/S − �m 
 �tm , �6�

where the effective field H is defined by the functional de-
rivative, H��mF �so that locally H�m�, and � is the
dimensionless Gilbert damping20 parameter. The total free
energy of our magnetoelectric system is F�m ,J ,��=F�m�
+F��J ,� ,���m�x , t���, where F�m� is a standard free
energy of the ferromagnet. Variation of the F� with respect
to m gives current-driven spin torque applied to the mag-
netic dynamics21 ����mF�
m, where �mF���m�����F�
=−pJ�m�� /c. Differentiating Berry phase �1� with respect to
m, we find

�� = PJ�xm . �7�

Since � /2e is the electron spin-charge conversion factor, we
can give another interpretation of this term. It is simply the
rate of change of the angular momentum of the conducting
electrons with spins locked to the magnetic profile. The spins
of the up/down electrons rotate in the opposite directions so
that if the spin up/down conductivities are the same �and thus
P=0�, the net change in their angular momentum vanishes.
Putting this term on the left-hand side, we get

�tm − PJ�xm/S = �mF�m� 
 m/S − �m 
 �tm . �8�

The left-hand side of this equation is the rate of change of the
total angular momentum density of the magnetoelectric
system,2 while the right-hand side gives the usual LLG
torque on the system.

III. DISSIPATIVE SPIN TORQUE

LLG equation �6� with torque �7� and Ohm’s law �4� with
the fictitious EMF �5� now constitute coupled equations of
our spin magnetohydrodynamic theory, with the reactive
coupling mediated by Berry phase �1�. We reproduce them
here for clarity �after putting the magnetization equation in
the Landau-Lifshitz form�,

�tJ = − RJ, �tm =
H 
 m − �H

�1 + �2�S
. �9�

These are the equations of motion for a quasistationary ther-
modynamic system near equilibrium.22 In equilibrium, the
current J is zero and magnetization is static. Out of equilib-
rium, the first-order time derivatives of �J ,m� are com-
pletely specified by the instantaneous values of their thermo-

FIG. 1. �Color online� Schematics of our principal “study case.”
Uniform electric current J�t� carried by itinerant electrons can be
driven by the external magnetic flux ��t� generating the EMF E
=−�t� /c. The magnetic texture m�x , t� responds to the effective
field H�x , t�, which may have an external contribution applied to the
wire independent of �. The reactive magnetohydrodynamic cou-
pling stems from the Berry phase ��, which is acquired by the
electron spin �shown in blue� following the instantaneous magnetic
profile �shown in red� around the loop. �� corresponds geometri-
cally to the solid angle enclosed by the electron spin. Coupled dis-
sipative processes arise once we relax the projection approximation,
allowing for some orientational spin mistracking and dephasing as
electrons propagate through the magnetic texture.
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dynamic conjugates �J ,H�. The right-hand side is a linear
expansion in these conjugates with dissipative coefficients R
and � that cause the system to relax back to equilibrium. So
far, the dissipation in the current and magnetization is sepa-
rate and physically unrelated. We now add the dissipative
couplings which will be the key results of this paper.

We proceed phenomenologically by adding to the current
equation �4� correction �E� to the Berry-phase EMF and
correction R� to resistance due to coupling with the magnetic
texture m�x , t�. The modified Ohm’s law then becomes

�tJ = − �R + R��J + �E�. �10�

To avoid a slew of uninteresting coefficients and anisotro-
pies, we will constrain the phenomenology by assuming
spin-rotational symmetry of the magnetic texture and the in-
version symmetry of the wire. Under the latter, m→m, J
→−J, �x→−�x, and E�→−E�. In the spirit of the standard
quasistationary description,22 we expand only up to the linear
order in the nonequilibrium quantities J and �tm, so that
terms of the form, e.g., J2�tm ·�xm are excluded. To the sec-
ond order in �xm, the only possible terms satisfying these
requirements are

�E� − R�J = �P� dx �xm · �tm − 
�2P2

�S
J� dx��xm�2.

�11�

The first term stems physically from a spin mistracking of
electrons propagating through the magnetic texture.14 Since
the mistracking should scale as 1 /�xc �vanishing in the limit
of infinite exchange �xc�, we may anticipate the dissipative
coupling to be governed by a small parameter �	� /�s�xc,
where �s is a characteristic �transverse� spin-dephasing time.
The  term in Eq. �10� describes the resistance associated
with magnetic texture, which is often discussed in the con-
text of magnetic domain walls.23 Both terms in Eq. �11� are
odd under time reversal, similar to ohmic resistance and Gil-
bert damping. Finally, we note that including in Eq. �11� a
reactive term of form �5� would not add anything new to the
following considerations as long as we treat P as a phenom-
enological coefficient.

Our modification of Ohm’s law must respect the Onsager
reciprocity principle.22 Substituting �tm from Eqs. �9� into
Eq. �11�, we see how the effective field H �which is conju-
gate to m� affects the dynamics of J. The Onsager theorem
is now readily applied to determine how the electric current
J �which is conjugate to J� should modify the dynamics of
m. We write the final result as a correction to spin torque �7�,

��� = �PJm 
 �xm . �12�

The complete equation of motion of the magnetic texture in
the LLG form thus becomes

�tm = H 
 m/S − �m 
 �tm + ���/S , �13�

with �� being implicitly included in H.
Equations �10� and �13� are our final coupled determinis-

tic equations. We can rewrite them in a more explicit form as

L�tJ + �R + R��J + �t�/c = P� dx �xm · �� − m
��tm ,

S�1 + �m
��tm + m 
 H = PJ�1 + �m
��xm . �14�

Here, the deterministic spin-torque contribution �7� is for
clarity separated out of the effective field H, which here
consists of the usual purely magnetic contributions. The left-
hand sides in these equations contain the ordinary Ohm’s law
�corrected for the magnetic-texture resistance R�� and the
LLG terms, respectively, while the right-hand sides describe
the reactive Berry-phase coupling and its dissipative � cor-
rection.

Equation �12� was derived microscopically in Refs. 4, 6,
24, and 25, relating � to electron-spin dephasing �
	� /�s�xc �consistent with our anticipation above�. Its On-
sager counterpart in Eq. �11� was first obtained phenomeno-
logically in Ref. 14 and microscopically in Ref. 13. These “�
terms” are now accepted to be crucial in understanding
current-driven magnetic dynamics and the reciprocal gauge
fields.

IV. DISSIPATION POWER

Suppose that we perturb our system with some nonequi-
librium current and magnetic texture, after which the system
evolves back toward equilibrium according to the equations
of motion, producing entropy. If the system is steadily
driven, the heat will be dissipated to the environment at some
finite rate. From standard thermodynamics, the dissipation
power is

P�m�x,t�,J�t�� � − J�tJ −� dxH · �tm

= RJ2 +� dx
�S��tm�2 − 2�PJ�xm · �tm

+ 
�2P2

�S
J2��xm�2� . �15�

According to the second law of thermodynamics, dissipation
�15� must always be positive, which means that �1. This
gives us the lower bound on the resistivity of the magnetic
texture,

� = 
�2P2

�S
��xm�2 �

�2P2

�S
��xm�2. �16�

In models where � comes solely from the coupling of the
magnetization to the conducting electrons �which is in fact
believed to be the dominant cause for Gilbert damping in
metallic ferromagnets�, we may expect lower bound �16� to
give an estimate for the texture resistivity. For a mean-field
Stoner-model treatment of Gilbert damping, we found �=�,
while for an s−d model we had �= �s /S��, where s is the
portion of spin density carried by the s electrons, S is the
total spin density, and �=� /�s�xc in both cases �with the
spin-dephasing time �s governed by the magnetic and spin-
orbit impurities�.6 In both models, therefore, �S=s�, giving
for the resistivity estimate �up to the second order in spatial
derivative�

THEORY OF SPIN MAGNETOHYDRODYNAMICS PHYSICAL REVIEW B 79, 014402 �2009�

014402-3



� � ��P2/s���xm�2, �17�

which involves only quantities related to conducting elec-
trons. Taking parameters relevant to Permalloy wires,7 p
	1, �	10−2, domain-wall width of 20 nm, and the magne-
tization of 103 emu /cm3, we find resistivity �17� to be �
	10−4 �� cm. This is smaller than the domain-wall resis-
tivity calculated to the �1 /�xc�2 order in spin mistracking of
the magnetic profile �but still quadratic order in texture�, in
the absence of spin relaxation,23 whose overall prefactor ap-
pears to be larger than in our Eq. �17� for transition metals.
We thus conclude that our  may in practice be much larger
than unity �which is the lower bound necessary for the con-
sistency of our phenomenology�.

Let us also note in passing that in the special case of �
=� and =1, magnetic dissipation �15� acquires a very
simple form,

P�m�x,t�� → �S� dx��tm −
PJ

S
�xm2

, �18�

which is nothing but the Gilbert dissipation with the advec-
tive time derivative Dt=�t+v�x �v=−PJ /S�. It is clear that
this limit describes dissipative magnetic dynamics that are
simply carried by the electric flow at speed v. In this case,
the spin torques disappear if we write the LLG equation �6�
with Dt in the place of �t.

8

V. THERMAL NOISE

At finite temperatures, thermal agitation causes fluctua-
tions of the current and magnetization, which are correlated
due to their coupling. A complete description requires that
we supplement the stochastic equations of motion with the
correlators of these fluctuations. It is convenient to regard
these fluctuations as being due to a stochastic external mag-
netic field �h and a stochastic current source �J; their noise
correlators are then related to the dissipative coefficients of
the theory according to the fluctuation-dissipation theorem
�FDT�. Constructing the noise sources by following the stan-
dard procedure,22 our final coupled stochastic equations be-
come

L�tJ + R̃�J + �J� + �t�/c = P� dx �xm · �� − m
��tm ,

�19�

S�1 + �m
��tm + m 
 �H + �h�

= PJ�xm + P�J + �J��m 
 �xm , �20�

where we have explicitly separated the deterministic spin-
torque contribution PJ�xm out of the effective field H, which
here consists of the usual purely magnetic contributions. The
left-hand sides in these equations contain the ordinary Ohm’s

law �corrected for the magnetic-texture resistance R̃=R+R��
and the LLG terms, respectively, while the right-hand sides
describe the reactive Berry-phase coupling and its dissipative
� correction.

Writing �J ,H�=−�̂ � ��tJ ,�tm�, we read out the “matrix”
�̂ from Eqs. �19� and �20�,

�̂J,J =
1

R�
, �̂J,h�x� = −

�P
R�

�xm, �̂h�x�,J =
�P
R�

�xm ,

�̂hi�x�,hi��x�� = S�ii�jmj�x���x − x�� + �S�ii���x − x��

−
�2P2

R�
�xmi�x��xmi��x�� , �21�

where �ijk is the antisymmetric Levi-Civita tensor. Symme-
trizing matrix �̂ immediately produces Langevin sources sat-
isfying the FDT,22 in the limit that ���kBT,

��J�t��J�t��� = 2kBT��t − t��/R̃, ��J�t��h�t��� = 0,

��hi�x��hi��x��� = 2kBT��S�ii���x − x��

− ��2P2/R̃��xmi�x�mi����t − t�� . �22�

Apart from the obvious contributions, we have a magnetic
field noise proportional to �2 in the form of a nonlocal tensor
Gilbert damping. The nonlocal Gilbert damping is apparent
if the electrons are not externally driven, �t�=0, in the limit
L→0 of a large ring, in which case the magnetic equation
decouples to give

S�1 + �m
��tm + m 
 �H + �h + �h��

=
P2

R̃
�1 + �m
��xm� dx��x�m · �� − m
��tm .

�23�

Here, we moved the spin torque driven by the Nyquist noise
to the left as

�h� = − P�Jm 
 �xm . �24�

�h� thus enters the equation as a statistically independent
current-driven noise source. Writing the right-hand side of
Eq. �23� as

− m 
� dx�KJ �x,x���tm�x�� , �25�

where

Kii��x,x�� =
P2

R�
�m 
 �xm − ��xm�i�m 
 �x�m + ��x�m�i�,

�26�

and extracting the symmetric part of the tensor Kii��x ,x��, we
arrive at the total Gilbert damping tensor

Gii��x,x�� = ��ii���x − x�� +
P2

SR̃
��m 
 �xm�i�m 
 �x�m�i�

− �2�xmi�x�mi�� . �27�

This is exactly the form required by the FDT, consistent with
the correlator for �h+�h�. The effective Gilbert damping can
thus appear both negative and positive in different regions.
The minimal texture resistivity �16�, however, insures that
we have a non-negative damping globally. This Gilbert
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damping originates physically in the spin torques that are
generated by the magnetically driven fictitious EMF. Nonlo-
cal �x�x� magnetic noise was recently constructed in Ref. 26
�neglecting spin relaxation and �� by heuristically converting
Nyquist current noise into magnetic fluctuations via adiabatic
spin transfer. Although the FDT-required nonlocal �x�x� Gil-
bert tensor �27� was established in that paper �apart from the
�2 piece�, only here are we able to derive it directly from the
fundamental Langevin sources of the coupled magnetohy-
drodynamic theory, dictated by the FDT. As estimated in Ref.
26, this nonlocal contribution to Gilbert damping is in prac-
tice important �in comparison to �� in nanoscale magnetic
structures.

VI. SUMMARY

We developed a general phenomenological theory of mag-
netohydrodynamic coupling in isotropic metallic ferromag-
nets. The reactive coupling between magnetic-texture dy-

namics on one hand and electric flows on the other stems
from the Berry phase accumulated by electron spin following
the quasistationary magnetic texture. Dissipative terms of the
coupled dynamic equations originate in the electron-spin
mistracking of the magnetic order parameter and the associ-
ated spin dephasing. Apart from the usual Gilbert damping,
the latter leads to a viscous coupling between electric cur-
rents and magnetic-texture dynamics, parametrized by a
single parameter �. We also obtain a small correction to the
texture resistivity at order �2. Finally, our thermodynamic
description of the magnetohydrodynamic coupling allows us
to derive the stochastic Langevin contributions to the effec-
tive field and electric current, according to the fluctuation-
dissipation theorem.
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